A Bayesian solution to multi-target tracking problems with mixed labelling

نویسندگان

  • Edson Hiroshi Aoki
  • Yvo Boers
  • Lennart Svensson
  • Pranab K. Mandal
  • Arunabha Bagchi
چکیده

In Multi-Target Tracking (MTT), the problem of assigning labels to tracks (track labelling) is vastly covered in literature and has been previously formulated using Bayesian recursion. However, the existing literature lacks an appropriate measure of uncertainty related to the assigned labels which has sound mathematical basis and clear practical meaning (to the user). This is especially important in a situation where targets move in close proximity with each other and thereafter separate again. Because, in such a situation it is well-known that there will be confusion on target identities, also known as “mixed labelling”. In this paper, we provide a mathematical characterization of the labelling uncertainties present in Bayesian multi-target tracking and labelling (MTTL) problems and define measures of labelling uncertainties with clear physical interpretation. The introduced uncertainty measures can be used to find the optimal track label assignment, and evaluate track labelling performance. We also analyze in details the mixed labelling phenomenon in the presence of two targets. In addition, we propose a new Sequential Monte Carlo (SMC) algorithm, the Labelling Uncertainty Aware Particle Filter (LUA-PF), for the multi target tracking and labelling problem that can provide good estimates of the uncertainty measures. We validate this using simulation and show that the proposed method performs much better when compared with the performance of the SIR multi-target SMC filter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A theoretical analysis of Bayes-optimal multi-target tracking and labelling

In multi-target tracking (MTT), we are often interested not only in finding the position of the multiple objects, but also allowing individual objects to be uniquely identified with the passage of time, by placing a label on each track. While there are many MTT algorithms that produce uniquely identified tracks as output, most of them make use of certain heuristics and/or unrealistic assumption...

متن کامل

A Bayesian look at the optimal track labelling problem

In multi-target tracking (MTT), the problem of assigning labels to tracks (track labelling) is vastly covered in literature, but its exact mathematical formulation, in terms of Bayesian statistics, has not been yet looked at in detail. Doing so, however, may help us to understand how Bayesoptimal track labelling should be performed or numerically approximated. Moreover, it can help us to better...

متن کامل

An analysis of the Bayesian track labelling problem

In multi-target tracking (MTT), the problem of assigning labels to tracks (track labelling) is vastly covered in literature, but its exact mathematical formulation, in terms of Bayesian statistics, has not been yet looked at in detail. Doing so, however, may help us to understand how Bayesoptimal track labelling should be performed or numerically approximated. Moreover, it can help us to better...

متن کامل

Decentralized and Cooperative Multi-Sensor Multi-Target Tracking With Asynchronous Bearing Measurements

Bearings only tracking is a challenging issue with many applications in military and commercial areas. In distributed multi-sensor multi-target bearings only tracking, sensors are far from each other, but are exchanging data using telecommunication equipment. In addition to the general benefits of distributed systems, this tracking system has another important advantage: if the sensors are suff...

متن کامل

Distributed Simultaneous Action and Target Assignment for Multi-Robot Multi-Target Tracking

We study a multi-robot assignment problem for multi-target tracking. The proposed problem can be viewed as the mixed packing and covering problem. To deal with a limitation on both sensing and communication ranges, a distributed approach is taken into consideration. A local algorithm gives theoretical bounds on both the running time and approximation ratio to an optimal solution. We employ a lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014